
International Journal of Scientific & Engineering Research, Volume 8, Issue 12, December-2017
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

Improved Performance of Round Robin CPU
Scheduling Algorithm Using Non-preemptive SJF

Md. Rashid Al Asif, Mehedi Raihan, Md. Zakaria Hossain, Md. Alam Hossain, Md. Abdul Momin

Abstract—The performance of multitasking operating system heavily depends on its scheduling algorithms. Round Robin is the most

important part of CPU scheduling algorithm in the operating system where time quantum affects the performance. This algorithm is very

useful for CPU scheduling that gives equal time quantum to all processes. This paper presents an improvement of RR CPU scheduling

algorithm that reduces the average turnaround time, average waiting time and the number of context switches. The RR CPU scheduling

algorithm with non-preemptive SJF method is applied for getting better performance. The proposed algorithm works as follows (i) Round

Robin CPU scheduling algorithm is applied until all the processes arrive in the request queue, (ii) When all the processes are in the request

queue then non-preemptive SJF is applied for remaining process execution. This proposed method increases the performance of RR CPU

scheduling algorithm.

Index Terms— Burst Time, Context Switching, CPU Scheduling Algorithm, Improved Performance of Round Robin, IPRR, Non-

preemptive, Operating System, Process Scheduling, Round Robin Scheduling, Shortest Job First, SJF, Turnaround Time, Waiting Time.

—————————— ——————————

1 INTRODUCTION

N operating system is a program that manages com-
puter hardware system. CPU scheduling algorithms play
a vital role in the computer operating system. In operat-

ing system multi-programming concept is very important to
increase CPU performance. Multitasking is one of the most
important parts supported by modern operating system. Mul-
ti-programming increases CPU utilization by organizing pro-
cesses. Only one process can run in the CPU at a time in a sin-
gle processor system, other processes in the ready queue have
to wait until the CPU becomes free to execute the next process.
A fundamental operating function is scheduling. Before using
almost all computer resources are scheduled. Decision of
scheduling tries to reduce turnaround time, average waiting
time and response time for processes and the number of con-
text switches.

2 CPU SCHEDULING ALGORITHMS

There are several basic CPU scheduling algorithms, which are
First Come First Serve (FCFS), Shortest Job First (SJF), Priority
Scheduling (PS) and Round Robin (RR).

2.1 FCFS

FCFS is a simple scheduling algorithm. In this technique, pro-
cesses are executed on first come first serve basis. The imple-
mentation of this method is easily managed with a FIFO
queue. It allocates the processes to CPU according to their ar-
rival in the ready queue. When the CPU is free then a process
is removed from the front of ready queue and gets CPU alloca-
tion. The average waiting time of this technique is high [8].

2.2 SJF

According to the burst time, the process moves to the ready
queue. The process with minimum burst time gets CPU alloca-
tion when the CPU is available. If the burst time of next two
processes has the same value then FCFS rule is applied to
those processes. A non-preemptive SJF does not relinquish
CPU allocation until finishes it’s currently running CPU burst.

But preemptive SJF do the opposite [2].

2.3 PS

Every process is assigned a priority and the process is allocat-
ed according to their priority (highest to lowest). If multiple
processes have the same priority then the FCFS rule is applied
for the processes [8], [10].

2.4 RR

Round Robin is specially design for the time sharing and real
time operating system. Each process maintains a small time
unit called time quantum. In this fashion, the processes get
CPU allocation for one time quantum at a time. When the pro-
cess needs more time, the process runs for the full length of
the time quantum and that process will be preempted and
then added to tail (rare) of the queue. Hence, the RR works in
preemptive fashion [2], [8], [11].

3 SCHEDULING CRITERIA

Different CPU scheduling algorithms have different properties
which decide selection of process using various criteria for
execution by CPU. Those criterions are used for comparison
and decide how one algorithm differs from the other are given
below:

1. Throughput: It is the number of process completed per
unit time.

2. Turnaround Time: It means to take total time of the
CPU to execute a process. It can be calculated as Turna-
round Time = Completion Time – Arrival Time or
Burst Time + Waiting Time.

3. Waiting Time: This is how much time a process has
been waiting in ready queue. Waiting Time = Turna-
round Time – Burst Time.

4. CPU Utilization: CPU utilization measures how much
busy the CPU.

5. Context Switch: Switching of the CPU from one process
to another is Context Switching.

A

1,734

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 12, December-2017
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

6. Response Time: It is the total amount of time to take
CPU at first time from the time of entering.

So, the following characteristics may represent a good CPU
scheduling algorithm [1], [8]:

1. Minimum context switches.
2. Maximum CPU utilization.
3. Maximum throughput.
4. Minimum turnaround time.
5. Minimum waiting time.
6. Minimum response time.

4 LITERATURE REVIEW

Round Robin CPU scheduling algorithm is mostly used in and
real-time and timesharing operating systems. The perfor-
mance of this algorithm is heavily dependent on quantum
time. So, the selection of quantum time is crucial. Quantum
time can be selected statistically or dynamically. Several au-
thors have been proposed various modifications of RR algo-
rithm.

From [12], every process is allocated to CPU on a priority
basis for only one quantum time. After that, remaining burst
time of each process assign a priority and performs scheduling
in SJF fashion. The shortest remaining burst time possess the
highest priority.

In the articale [13], all the processes are arranged in ascend-
ing order according to their burst time. Then, by taking the
median (as quantum time) of processes that present in the
ready queue. Afterwards, time quantum is recalculated for the
remaining burst time of processes.

Kishor et al [14] perform a modification of RR algorithm
with zero arrival time (when t = 0 then all the processes ar-
rive). It works like as [13] except the time quantum is calculat-
ed by taking the average of burst times in the ready queue.
And, the same technique is applied for the remaining burst
time of processes.

A new algorithm with zero arrival time is proposed by
Hiranwal and Roy [15]. Here all the processes are arranged in
ascending order according to their burst time. After that, time
quantum is calculated which depends on a number of pro-
cesses. If the number of processes is odd then take the burst
time of mid-process as quantum time otherwise take the aver-
age of burst times as quantum time.

Another paper proposed Longest Job First Combinational
Burst Time (LJF+CBT) CPU scheduling algorithm which is an
improvement of Longest Job First (LJF). This algorithm ar-
ranges the processes in descending order according to their
burst time and determines the average of processes as Com-
bined Weighted Average (CWA). CWA is a criterion by which
a short or long process is identified. If the burst time of a pro-
cess is greater than CWA then it is recognized as a long pro-
cess otherwise short process. Two consecutive shorter pro-
cesses are used to create new burst time, merged into one,
placed and sort in a new queue in descending order according
to their burst time. Afterwards, processes are allocated to CPU
in LJF fashion [16].

Mishra [7] introduced an algorithm (IRR) where each pro-
cess is allocated in RR fashion. Afterwards, it checks the re-
maining burst time of currently running process. If the burst

time is less than the time quantum then it gets the CPU alloca-
tion again otherwise moves to the end of the READY queue.

Abdulrahim et al [8] added an ARRIVE queue to a modifi-
cation of IRR and consider the ceiling of the average of burst
time of processes as quantum time. If a running process has a
burst time more than half of the quantum time then it moved
from REQUEST queue to ARRIVE queue. For the remaining
burst time of processes, the time quantum is calculated again.
And this iteration will continue until REQUEST and ARRIVE
queue is empty.

Sain [3] proposed Dynamic time quantum Shortest Job
Round Robin (Dynamic SJRR) where half of the burst time of
the first process is considered as the time quantum for the first
process. Then the processes are arranged in ascending order
according to their F (where F = arrival time + CPU burst time).
Now, for all the processes that has a burst time equal to F is
allocated to CPU in FCFS manner. After that, quantum time is
taken from the mean value (which is derived from burst times
of all processes). Finally, new quantum is assigned to all pro-
cesses and recalculate if the remaining burst time exist. And
the procedure iterates unit the ready queue is empty.

Datta [17] performs a modification of DRRR algorithm [13]
by adding different quantum time for each round of RR CPU
scheduling. And this quantum time is calculated by consider-
ing the remaining CPU burst time, waiting time for each pro-
cess. For a real-time system, it also facilitates the implementa-
tion of simple RR comparing with [13].

Authors represent this paper as a modification of RR CPU
scheduling algorithm. The proposed algorithm checks all the
processes are in request queue or not. If yes then it applies
non-preemptive SJF for all the remaining processes including
the remaining burst time of the running process. As a result,
the proposed algorithm performs better by reducing average
turnaround time (ATAT), average waiting time (AWT), and
number of context switches (NCS).

5 PROPOSED ALGORITHM

The proposed Improved Performance of Round Robin (IPRR)
CPU scheduling algorithm maintains two queues namely, re-
quest queue and ready queue. At first, processes are placed in
request queue according to their arrival time. For getting CPU
allocation, a process is moved from request queue to ready
queue. The processes start execution in RR fashion until all the
processes arrive in request queue. If the burst time of a run-
ning process is greater than quantum time then the process
with remaining burst time is moved from ready queue to re-
quest queue. When all the processes are available in request
queue then non-preemptive SJF is applied for remaining pro-
cesses. The algorithm comprises the following steps:

Step 1: Insert all the processes in request queue according
to their arrival time. For CPU allocation a process is moved
from request queue to ready queue.

Step 2: Round Robin CPU scheduling algorithm is applied
for process execution until all the processes arrive in request
queue. If the burst time of a running process is greater than
time quantum then the process with remaining burst time is
moved from ready queue to request queue.

Step 3: When all the processes are available/last process

1,735

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 12, December-2017
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

arrive in request queue then non-preemptive SJF is applied for
remaining processes.

Step 4: Calculate average waiting time, average turna-
round time and number of context switches.

5.1 Illustrative Example of Proposed IPRR Algorithm

Table 1 is used to illustrate the RR and the proposed IPRR al-
gorithm. All the processes are arrived in different arrival time.
And a request queue is maintained for process selection. The
time quantum is taken 3ms for both RR and IPRR.

Table 1

Process Arrival Time Burst Time

P1 0 5

P2 1 3

P3 3 6

P4 5 1

P5 6 4

Calculation of average waiting time, average turnaround time
and number of context switches for RR:

Request queue for RR: P1, P2, P3, P1, P4, P5, P3, P5

Fig. 1: Gantt chart of RR

Waiting Time:
P1: (0 - 0) + (9 - 3) = 6,
P2: (3 - 1) = 2,
P3: (6 - 3) + (15 - 9) = 9,
P4: (11 - 5) = 6,
P5: (12 - 6) + (18 - 15) = 9.

Average Waiting Time (AWT) = (6 + 2 + 9 + 6 + 9)/5 = 6.4

Turnaround Time:

P1: (5 + 6) = 11,
P2: (3 + 2) = 5,
P3: (6 + 9) = 15,
P4: (1 + 6) = 7,
P5: (4 + 9) = 13.

Average Turnaround Time (ATAT) = (11 + 5 + 15 + 7 + 13)/5
= 51/5 = 10.20

Number of context switches (NCS) = 7

Calculation of average waiting time, average turnaround time
and number of context switches for IPRR:

Request queue for IPRR: P1, P2, P3, P1, P4, P5

Fig. 2: Gantt chart of PIRR

Waiting time:
P1: (0 - 0) + (7 - 3) = 4,
P2: (3 - 1) = 2,
P3: (13 - 3) = 10,
P4: (6 - 5) = 1,
P5: (9 - 6) = 3.

Average Waiting Time (AWT) = (4 + 2 + 10 + 1 + 3)/5 = 20/5
= 4
Turnaround Time:

P1: (5 + 4) = 9,
P2: (3 + 2) = 5,
P3: (6 + 10) = 16,
P4: (1 + 1) = 2,
P5: (4 + 3) = 7.

Average Turnaround Time (ATAT) = (9 + 5 + 16 + 2 + 7)/5 =
39/5 = 7.80

Number of context switches (NCS) = 5

Table 2: Comparison of RR and IPRR

Grantt Time Quantum AWT ATAT NCS

RR 3 6.40 10.20 7

Proposed IPRR 3 4 7.80 5

From Table 2, the proposed IPRR algorithm shows better per-
formance than Round Robin CPU scheduling algorithm.

5.2 Evaluation of Proposed IPRR Algorithm

The processes shown in Table 3, Table 5 and Table 7 were used
to evaluate the proposed algorithm. There are some processes
and their arrival time and burst time corresponding.

Table 3

Process Arrival Time Burst Time

P0 0 15

P1 2 13

P2 4 8

P3 5 10

P4 1 12

P5 6 26

P6 3 7

Time Quantum = 5ms

Fig. 3: Gantt chart of RR

Fig. 4: Grantt chart of dynamic SJRR

Fig. 5: Grantt chart of proposed IPRR

1,736

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 12, December-2017
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

Table 4: Comparison of RR, Dynamic SJRR and IPRR

Grantt Time Quantum AWT ATAT NCS

RR 5 51.85 64.85 17

Dynamic SJRR 8, 12, 7 32.28 45.28 8

Proposed IPRR 5 30.14 43.14 8

Now, consider a dataset with zero arrival time.

Table 5

Process Arrival Time Burst Time

P1 0 23

P2 0 75

P3 0 93

P4 0 48

P5 0 2

Fig. 6: Grantt chart of RR with time quantum = 50ms

Fig. 7: Grantt chart of IRR with time quantum = 50ms

Fig. 8: Grantt chart of LJF+CBT

Fig. 9: Grantt chart of proposed IPRR

Table 6: Comparison of RR, IRR, LJF+CBT and IPRR

Algorithm AWT ATAT NCS

RR 113 161.2 6

IRR 110.2 158.4 4

LJF+CBT 95.4 143.6 3

Proposed IPRR 49.6 97.8 4

Now, consider another dataset with non-zero arrival time:

Table 7

Process Arrival Time Burst Time

P1 0 28

P2 2 35

P3 6 50

P4 6 82

P5 8 110

Lipika Datta [17] proposed a dynamic time slice algorithm

and comparing with DQRRR as in [13] using Table 7 which
performs better in average wating time, average turnaround
itme and fewer number of context switches.

The authors also inverstigate Table 7 with proposed IPRR

alogorithm where 20ms taken as time quantum.

Fig. 10: Grantt chart of proposed IPRR

Table 8: Comparision of DQRR, Dynamic Time Slice and

IPRR

Algorithm AWT ATAT NCS

DQRRR 112.2 173.2 7

Dynamic Time Slice 94.6 152.0 7

Proposed IPRR 79.8 140.8 5

6 RESULT AND ANALYSIS

To determine the performance of CPU scheduling algorithm
AWS, ATAT, NCS are considered as crutial factor. The pro-
posed IPRR algorithm results better compared with the refer-
ence papers (discussed in literature review section) which are
evaluated in section 5.2.

The following graphical resentation show the comparision
of AWT, ATAT, and NCS of different algorithms with pro-
posed one.

Fig. 11: Graphical representation of Table 4

Fig. 12: Graphical representation of Table 6

1,737

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 12, December-2017
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

Fig. 13: Graphical representation of Table 8

From the result, it can be concluded that the proposed IPRR
algorithm performs better by reducing AWT, ATAT and NCS.

7 CONCLUSION

The allocation of CPU to the processes is crutial in operating sys-
tem. For this purpose, several CPU scheduling algorithms (FCFS,
SJF, PS, RR etc.) already been introduced. But they have their own
adavantages, workflow and performance issues (waiting time,
number of context swiches etc). And the performance of CPU
heavily depends on CPU scheduling algorithm. Several authors
perform modification of existing algorithms which is superior in
the context of performance. The proposed IPRR works as: firstly,
it checks all the processes are in request queue or not. If no, then
allocate CPU to the processes in RR fashion. Secondly, if all the
processes are available in request queue then non-preemptive SJF
is applied for the remaining processes including the remaining
burst time of the running process. Hence, the performace of pro-
posed IPRR algorithm performs better by reducing the AWT,
ATAT and NCS.

In future, pipeline technology can be integrated with IPRR
algorithm to improve the performance.

REFERENCES

[1] R. K. Yadav, A. K. Mishra, N. Prakash, and H. Sharma, “An improved round

robin scheduling algorithm for CPU scheduling,” International Journal on

Computer Science and Engineering, vol. 2, no. 04, pp. 1064–1066, 2010.

[2] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Con-

cepts, Seventh Edition, 7th edition. Hoboken, NJ: John Wiley & Sons,

2004.

[3] A. K. Sain, “Dynamical Modified RR CPU Scheduling Algorithm,”

International Journal of Computer Trends and Technology (2231-

2803), Volume, no. 4, pp. 90–93.

[4] R. J. Matarneh, “Self-adjustment time quantum in round robin algo-

rithm depending on burst time of the now running processes,”

American Journal of Applied Sciences, vol. 6, no. 10, p. 1831, 2009.

[5] A. Noon, A. Kalakech, and S. Kadry, “A new round robin based

scheduling algorithm for operating systems: dynamic quantum using

the mean average,” arXiv preprint arXiv:1111.5348, 2011.

[6] A. P. M. Srivastav, S. Pandey, I. Gahoi, and N. K. Namdev, “Fair

priority round robin with dynamic time quantum: FPRRDQ,” Inter-

national Journal of Modern Engineering Research (IJMER), vol. 2, pp.

876–881, 2012.

[7] M. K. Mishra, “An Improved Round Robin CPU Scheduling Algo-

rithm,” Journal of Global Research in Computer Science, vol. 3, no. 6,

pp. 64–69, 2012.

[8] A. Abdulrahim, S. E Abdullahi, and J. B Sahalu, “A New Improved

Round Robin (NIRR) CPU Scheduling Algorithm,” International

Journal of Computer Applications, vol. 90, no. 4, pp. 27–33, 2014.

[9] M. Shoaib and M. Z. Farooqui, “A Comparative Review of CPU

Scheduling Algorithms,” in Proceedings of National Conference on Re-

cent Trends in Parallel Computing (RTPC-2014).

[10] E. O. Oyetunji and A. E. Oluleye, “Performance assessment of some

CPU scheduling algorithms,” Research Journal of Information Tech-

nology, vol. 1, no. 1, pp. 22–26, 2009.
[11] M. A. H. Al-Hagery, “A selective quantum of time for round robin

algorithm to increase CPU utilization,” International Journal of
Computer Information Systems, vol. 3, pp. 54–59, 2011.

[12] I. S. Rajput and D. Gupta, “A priority based round robin CPU sched-
uling algorithm for real time systems,” International Journal of Inno-
vations in Engineering and Technology, vol. 1, no. 3, pp. 1–11, 2012.

[13] H. S. Behera, R. Mohanty, and D. Nayak, “A New Proposed Dynamic
Quantum with Re-Adjusted Round Robin Scheduling Algorithm and
Its Performance Analysis,” arXiv:1103.3831 [cs], Mar. 2011.

[14] L. Kishor, D. Goyal, R. Singh, and P. Sharma, “Optimized scheduling
algorithm,” in Proceedings of the IJCA International Conference on
Computer Communication and Networks (CSICOMNET’11), pp.
130–134, 2011.

[15] S. Hiranwal and K. C. Roy, “Adaptive round robin scheduling using
shortest burst approach based on smart time slice,” International
Journal of Computer Science and Communication, vol. 2, no. 2, pp.
319–323, 2011.

[16] I. Abdullahi and S. B. Junaidu, “Empirical Framework to Mitigate
Problems in Longer Job First Scheduling Algorithm LJF+ CBT,” In-
ternational Journal of Computer Applications, vol. 75, no. 14, 2013.

[17] L. Datta, “Efficient Round Robin Scheduling Algorithm with Dynam-
ic Time Slice,” IJ Education and Management Engineering, vol. 2, pp.
10–19, 2015.

ABOUT THE AUTHORS

Mehedi Raihan is currently working as a web
and software developer at Kodesolution. Recent-
ly he has completed his B.Sc. in Computer Sci-
ence and Engineering at North Western Universi-
ty, Khulna. Email: mehedismr@gmail.com.

Md. Zakaria Hossain is working as a web devel-
oper at Kodesolution. He has just completed his
B.Sc. in Computer Science and Engineering at
North Western University, Khulna. Email:
jakahossain@gmail.com.

Md. Alam Hossain is currently serving as a Chairman, De-
partment of Computer Science and Engineering (CSE), Jessore
University of Science and Technology (JUST), Bangladesh, Email:
alamcse_iu@yahoo.com.

Md. Rashid Al Asif is currently doing his M.Sc. Engg. in CSE
at JUST, Email: rshid.al.asif@gmail.com. His is interested in the
field of cloud computing, deep learning, algorithms, IoT and ma-
chine learning.

Md. Abdul Momin is an instructor in the field of CSE and
interested in data structures, algorithms, image processing
and bioinformatics. His E-mail: momin0625@gmail.com.

1,738

IJSER

http://www.ijser.org/
mehedismr@gmail.com
jakahossain@gmail.com
alamcse_iu@yahoo.com
mailto:rshid.al.asif@gmail.com
mailto:momin0625@gmail.com

